Please use this identifier to cite or link to this item:
http://dspace.cityu.edu.hk/handle/2031/8782
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Wong, Pak Lok | en_US |
dc.date.accessioned | 2017-03-08T06:23:36Z | |
dc.date.accessioned | 2017-09-19T09:16:22Z | |
dc.date.accessioned | 2019-02-12T07:35:29Z | - |
dc.date.available | 2017-03-08T06:23:36Z | |
dc.date.available | 2017-09-19T09:16:22Z | |
dc.date.available | 2019-02-12T07:35:29Z | - |
dc.date.issued | 2016 | en_US |
dc.identifier.other | 2016eewpl821 | en_US |
dc.identifier.uri | http://144.214.8.231/handle/2031/8782 | - |
dc.description.abstract | Gender-age analysis played a significant part in facial image analysis, it owns great potential in relevant amount of applications, especially since the rise of global social media platforms. However, despite advances in automatic gender-age estimation, it also encounters a low-accuracy problem since real-world images are captured by different poses, angles, lighting, environmental factors, etc. This project aims at experimenting on a gender-age classifier using unconstrained images that classifies a person's gender and age automatically. Deep Convolutional Neural Network (CNN) was hired to design for main gender-age classification model. Caffe which is a deep learning framework, was chosen to construct and implement for our deep learning network. The final gender and age classification rates achieved by our trained model were 95.46% and 84.21% respectively on Adience benchmark database. The result of this project illustrated that CNN could be used to improve gender and age classification with better performances even considering smaller size of unconstrained images. | en_US |
dc.rights | This work is protected by copyright. Reproduction or distribution of the work in any format is prohibited without written permission of the copyright owner. | en_US |
dc.rights | Access is restricted to CityU users. | en_US |
dc.title | Deep Face Analysis with Convolution Neural Network | en_US |
dc.contributor.department | Department of Electronic Engineering | en_US |
dc.description.supervisor | Supervisor: Mr. Ting, Van C W; Assessor: Dr. Yeung, Alan K H | en_US |
Appears in Collections: | Electrical Engineering - Undergraduate Final Year Projects |
Files in This Item:
File | Size | Format | |
---|---|---|---|
fulltext.html | 146 B | HTML | View/Open |
Items in Digital CityU Collections are protected by copyright, with all rights reserved, unless otherwise indicated.